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Abstract—Discrete wavelet transform (DWT) provides an ad-
vantageous framework of multiresolution space-frequency rep-
resentation with promising applications in image processing. The
challenge as well as the opportunity in wavelet-based compression
is to exploit the characteristics of the subband coefficients with
respect to both spectral and spatial localities. A common problem
with many existing quantization methods is that the inherent
image structures are severely distorted with coarse quantization.
Observation shows that subband coefficients with the same mag-
nitude generally do not have the same perceptual importance;
this depends on whether or not they belong to clustered scene
structures. We propose in this paper a novelsceneadaptive and
signal adaptive quantization scheme capable of exploiting both
the spectral and spatial localization properties resulting from
wavelet transform. The proposed quantization is implemented as
a maximum a posterioriprobability (MAP) estimation-based clus-
tering process in which subband coefficients are quantized to their
cluster means, subject to local spatial constraints. The intensity
distribution of each cluster within a subband is modeled by an
optimal Laplacian source to achieve the signal adaptivity, while
spatial constraints are enforced by appropriate Gibbs random
fields (GRF) to achieve the scene adaptivity. Consequently, with
spatially isolated coefficients removed and clustered coefficients
retained at the same time, the available bits are allocated to
visually important scene structures so that the information loss
is least perceptible. Furthermore, the reconstruction noise in the
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into multiscale representations. Moreover, wavelets have good
localization properties both in space and frequency domains
[11]. These two features provide excellent opportunities to
incorporate the properties of the HVS and devise appropriate
coding strategies to achieve high performance image and
video compression. In general, for a target bit rate, higher
compression ratio in high frequency subbands, where the
distortion becomes less visible, allows the low frequency
subbands to be coded with high fidelity. Although this is
not unique to subband schemes, prioritized coding is lim-
ited in a DCT-based scheme because of the sole use of
frequency representation. Decomposed subbands provide a
joint space-frequency representation of the signal. Therefore,
one can devise a coding scheme to take advantage of both
the frequency and spatial characteristics of the subbands. In
other words, one can determine the perceptual importance
of the subband coefficients based on not only the frequency
content, but also the spatial content, or scene structures.
The combination of high compression ratio for perceptually
insignificant coefficients and high fidelity for perceptually
significant coefficients provides a promising alternative to high
quality image and video coding at low bit rates.

For high frequency subbands, where the correlation has
already been reduced by subband decomposition, various
scalar and vector quantization schemes have been proposed,
including: PCM (scalar quantization) [5], finite state scalar
quantization [12], vector quantization [13], edge-based vector
quantization technique [14], geometric vector quantization
(GVQ) based on constrained sparse codebooks [8], and a scalar
quantization that utilizes a local activity measure in the base
band to predict the amplitude range of the pixels in the upper
bands [15], etc. All these schemes have been proposed to take
advantage of the characteristics of the high frequency subbands
in order to increase the coding efficiency.

However, a common problem with many existing quantiza-
tion methods is that the inherent image structures are severely
distorted with coarse quantization. An apparent drawback of
the conventional scalar quantization schemes is the inefficiency
in approaching the entropy limit. Therefore, image fidelity
cannot be properly maintained when the quantization becomes
very coarse at low bit rates. Vector quantization (VQ), on the
other hand, would generally achieve better coding efficiency.
In general, VQ is performed by approximating the signal to
be coded by a vector from a codebook generated from a set
of training images based on minimizing the mean square error
(MSE) [13]. In the case of GVQ, the structure and sparseness
of the high frequency data is exploited by constraining the
number of quantization levels for a given block size. The
number of levels and block size determine the bit rate, and
the levels and shape adapt for each block [8], [16], [17].
In general, the creation of a universal codebook for any
image is impossible. The performance of vector quantization
applied to a particular image largely depends on a codebook
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to decompose and reconstruct the signal. The regularity
and orthogonality of the wavelet filterbanks ensure the
reconstruction of image and video signals with high
perceptual quality. Moreover, it has been shown [10], [13],
[22] that the wavelet transform corresponds well to the
human psychovisual mechanism because of its localization
characteristics in both space and frequency domains. Note
that the choice of wavelets also corresponds well to the
proposed quantization scheme. First, the good localization
of wavelet decomposition in frequency domain offers good
frequency separation that facilitates efficient compression.
Second, and more important, the good localization of wavelet
decomposition in spatial domain justifies and facilitates
the incorporation of spatial constraints in the quantization.
Appropriate spatial constraints can then be efficiently enforced
to identify and preserve perceptually important components
in the process of quantization.

B. Characteristics of Subbands and
Corresponding Coding Strategy

After the spatio-temporal decomposition, the resultant sub-
bands exhibit quite different characteristics from one to another
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significant perceptual importance are preserved mimicking
the HVS perception. In the perceptual literature, the Gestalt
psychologists of the 1920’s and 1930’s investigated questions
of how the human visual system groups together simple visual
patterns. More recently in computer vision literature [25],
these Gestalt investigations have inspired work in perceptual
grouping, an area championed by Lowe [26] and Witkin and
Tenenbaum [27]. In particular, Lowe [26] defines perceptual
grouping as a basic capability of the human visual system
to derive relevant grouping and spatial structures from an
image without prior knowledge of its contents. As expected
and will be shown later, the adaptive quantization is able to
group together the subband coefficients likely to have come
from intrinsic objects in the original scene, without requiring
specific object models [28]. The quantization depends on the
local scene structure and is thereforescene adaptive. Upon the
completion of such an adaptive clustering and quantization, the
highpass subbands contain mainly refined “edges” or “clumps”
over a much cleaned background. Since the “noise” is largely
removed and the “edges” are redefined using only a few levels,
the images are significantly less busy with greatly reduced
entropy.

We have tailored the clustering algorithm proposed in [29]
and [30] to develop an enhanced adaptive clustering algorithm.
It has been shown in [29] and [31]–[33] that images can be
modeled by a Gibbs random field and image clustering can
be accomplished through a maximuma posterioriprobability
(MAP) estimation. Using Bayes’ theorem and the log likeli-
hood function, the Bayesian estimation that yields MAP of the
clustering given the image can be expressed as
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Fig. 3. Typical histograms of the subbands (_____ the lowpass band, - - -
a highpass band). The horizontal axis is the intensity axis, and the vertical
axis is the histogram count axis.

Fig. 4. Cliques for subbands with different preferential directions.

level. can also be related to bit allocation in progressive
coding in that larger is used for the subbands on higher
levels to reduce the bit stream when bits are running out. Such
flexible parameterization of the Gibbs random field allows us
to preserve the most significant structures in a given subband
under the bit rates constraints.

2) Modeling of the Cluster Intensity Distribution:It has
been shown that the overall distribution of a high frequency
subband, as shown in Fig. 3, can be optimally modeled by a
Laplacian with zero mean. Such modeling yields the best cod-
ing performance under optimal bit allocation [10]. Within each
high frequency subband, nonzero coefficients are basically
clustered into “edges,” i.e., oscillating positive or negative
“strips” over the fairly uniform zero background, or appear as
isolated “impulses.” For a quantization scheme that is scene
adaptive, it needs to preserve those critical positive, negative,
and zero values which are of perpetual significance in the
reconstruction. PCM was first introduced to quantize these
subbands and a “dead zone” technique [35] was proposed to
suppress visually insignificant noise around zero by setting
a relatively larger quantization interval around zero. This
technique allows finer quantization of the tails of the Laplacian
distribution because the pixels of larger amplitude are often of
greater visual importance [5], [8], [35]. However, the noise
suppression using this technique is limited to smoothing only
the noise close to the zero background and leaves noises in
the rest of the range of the intensity distribution unaffected.

There are several possible models for the individual inten-
sity distribution



LUO et al.



350 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 2, APRIL 1997

Fig. 6. Dead zone effect.

over large distances through clique interactions in successive
iterative processes. Therefore, some edge enhancing effect can
occur, which is not desired in the case of quantization if image
fidelity is the concern. Second, the iterative implementation is
still considered time-consuming although the ICM is one of the
computationally least expensive optimization techniques [29].
In the case of video communication where large amounts of
subbands are generated in the spatio-temporal decomposition,
it cannot afford an expensive computation since real-time
processing is often required.

For the clustering-based adaptive quantization, we de-
veloped a two-step noniterative implementation. At first,
a Lloyd–Max scalar quantizer is found whose optimal
reconstruction levels are used as the means of clusters.
MAP estimation of the clustering is then accomplished in
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(a) (b)

Fig. 7. A four-band decomposition of the “Lena” image: (a) original subbands and (b) quantized high frequency subbands.

The conditional probability of the quantizationgiven the
original data can be written as
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(a) (b)

Fig. 8. Reconstruction of “Lena” using the EZW algorithm [40]: (a) the original “official” “Lena” image and (b) the reconstructed image.

(a) (b)

Fig. 9. Reconstruction of “Lena” with the adaptive quantization and the EZW algorithm: (a) the reconstructed image and (b) the enhanced image.

subband is made much smoother because of the incorporation
of spatial constraints. Using the adaptive quantization, we
remove those perceptually negligible noisy contents and only
preserve those visually important components in the high
frequency subbands (see Fig. 7). To boost the contrast and
emphasize the effect of the adaptive quantization for display

purpose, histogram equalization has been performed on those
subband images. The numerical results on entropy reduction
are presented in Tables I and II.

In terms of the modeling of the intensity distribution, mul-
tiple Laplacian modeling is able to produce the most coherent
quantization. In terms of the implementation, the noniterative
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(a) (b)

(c) (d)

Fig. 12. Quantization of a high-frequency subband (blowup). (a) Lloyd–Max quantizer without spatial constraints, (b) adaptive quantization with Gaussian
modeling, (c) adaptive quantization with Gaussian modeling and ICM, and (d) adaptive quantization with Laplacian modeling and NICM.

(a) (b)

Fig. 13. Reconstructed frame of the “Salesman” sequence: (a) original frame and (b) overall reconstruction.

visual improvements are of significant importance. For the
“Salesman” sequence, we achieved the 40 : 1 compression
required for videoconferencing. The compression ratio of 40 : 1
for a common intermediate format (CIF) sequence means
the luminance signal is coded at 304 kb/s, which leaves 64
kb/s for the chrominance signal and 16 kb/s for the audio
in a 384 kb/s video conferencing application, similar to the
scheme adopted in [8], [17]. The PSNR of our results is
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TABLE I
PSNR OF THE RECONSTRUCTION AND OVERALL ENTROPY REDUCTION IN HIGH-FREQUENCY (HF) SUBBANDS

TABLE II
ENTROPY REDUCTION AFTER QUANTIZATION FOR “SALESMAN” SEQUENCE

which is able to match the PSNR performance of the motion
compensation-based schemes, such as H.261 and H.263.

VI. DISCUSSION AND CONCLUSIONS

It is well known [24] that the HVS tends to be attentive
to the major structured discontinuities within an image, rather
than intensity changes of individual pixels. Therefore, a de-
sired property for a quantization scheme is the capability of
high fidelity representation of major scene structures. Unlike
the DCT-based schemes in which spatial information is lost
after the transform, the wavelet transform preserves both spa-
tial and frequency information in the decomposed subbands.
Since the nature of image scene structures is nonstationary
and varies for each individual image, a simple statistical
model, as adopted by many existing quantization schemes,
is often inadequate for individual scene representation. The
combination of a scene structure model and a conventional
statistical model will be more appropriate to characterize
both the random and deterministic scene distributions within
an image. Because scene structures of objects can often be
represented by edges, a primitive candidate for scene structure
description will be the location, strength, and orientation of
edges. In wavelet coding, such edge information is already
available in the high-frequency subbands. The issue is how to
combine such information with statistical models to achieve a
scene adaptive and signal adaptive quantization.

The proposed quantization scheme has provided us an
effective way of distinguishing perceptually more important

structures from less important ones. Within the high-frequency
subbands, those strong and clustered edges correspond to
important scene structures and are retained, while those weak
and isolated impulses correspond to perceptually negligible
components and are discarded. To identify these clustered
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